
A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

A Parallel Implementation of Tensor
Multiplication

Bryan Rasmussen

Los Alamos National Laboratory

30 November 2006



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Goals & requirements

Goal

To develop a parallel version of tensor multiplication with
reductions.

Requirements

At a minimum, multiply two rank-4 tensors with two
reductions.

Have potential for multiplying large tensors with
applications in computational chemistry.

Use memory efficiently.

Scale well.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Basic definition

Tensor: Extension of the idea of a linear operator to
multi-linear algebra setting.

Useful for writing equations with respect to arbitrary
coordinate systems—many applications.

Just as we may write a linear operator as a matrix (in
finite-dimensional space),

A =
(
Ae1 Ae2 · · · Aem

)
,

we may also write tensors as multi-dimensional boxes of
numbers. Number of dimensions of box = rank of tensor, e.g.,

rank-4 tensor: aijkn.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Notation

Multiplication like an outer product.

cijkmnp = aijkbmnp

Repeated indices ⇒ summation

cijmn = aijkbmnk ⇔ cijmn =
∑
k

aijkbmnk .

Also known as tensor contraction, or reduction.
In general, if we are multiplying c∗∗...∗ = a∗∗...∗b∗∗...∗,

(Rank c) = (Rank a) + (Rank b) - (2 × reductions).



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Notation examples

Consider 3-D column vectors u, v, and matrices A, B.

Inner product: s = uivi =
∑3

i=1 uivi = uTv

Outer product: wij = uivj

wij = uivj =

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 = uvT

Matrix-vector multiplication: vi = ai juj

vi = aijuj =
3∑

j=1

aijvj =

a11v1 + a12v2 + a13v3

a21v1 + a22v2 + a23v3

a31v1 + a32v2 + a33v3

 = Au



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Notation examples (continued)

Matrix-matrix multiplication: cik = ai jbjk

cik = aijbjk =
3∑

j=1

aijbjk = AB =



(
a11b11 + a12b21

+ a13b31

) (
a11b12 + a12b22

+ a13b32

) (
a11b13 + a12b23

+ a13b33

)
(

a21b11 + a22b21

+ a23b31

) (
a21b12 + a22b22

+ a23b32

) (
a21b13 + a22b23

+ a23b33

)
(

a31b11 + a32b21

+ a33b31

) (
a31b12 + a32b22

+ a33b32

) (
a31b13 + a32b23

+ a33b33

)


Exercise: Construct ABT , uTAv, etc.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Application of interest

Concentrate on aijkt = bijef cktef .

Actually, code works for
wa1a2...amb1b2...bn = ua1a2...amc1c2...cpvb1b2...bnc1c2...cp .

Assume a k-index transformation:

vi1i2...ik =
M∑

j1j2...jk=1

zi1j1zi2j2 · · · zik jk

Call z the characteristic matrix.

Trade-off between storage and computation time.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Two ways to construct serial algorithm

Our strategy: element-by-element multiplication.

- Easier to read and analyze.
- Easier to extend to arbitrary-rank, arbitrary-reduction.

Another strategy: Unwrap the tensors.

⇔

- Tensor operations become block-matrix multiplications.
- Can use BLAS to compute.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Implementation in C++
bryTensor class description

Data

Tensor Double-precision, not allocated until needed.

Char. matrix Double-precision, not allocated until needed.

Statistics Dimensions, ranks, tags, etc.

Mods Cumulative products used for indexing.

Operations

Load/resize Load tensor or characteristic matrix from file, double
* variable, etc. Resize necessary for parallel version.

Formation Form piece of tensor from characteristic matrix.

Product Overwrites current tensor with product of two others.
Arguments: pointers to tensors, # reductions.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Parallelization

Multiplying wa1a2...amb1b2...bn = ua1a2...amc1c2...cpvb1b2...bnc1c2...cp .

Assumption

Each processor can hold one row of u, v and w .

A row: u(i,:,:,...,:).

In index notation for rank-3 tensor: u2jk .

If u and v have 128 rows each, then each processor must
be able hold 1/1283 ≈ 1/(2.1 · 106) of problem.

Divide rows of u among processors, then divide rows of v
among processors assigned to each row of u.

Notation: Nu, Nv are rows of u, v , respectively; P is number of
processors.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

P < Nu

Each processor gets all of v .

Each processor gets one or more rows of u.

- If Nu = 10, and P = 4, then 2 processors would get 2 rows
and 2 processors would get 3 rows.

Start row of u assigned to processor n:

n bNu/Pc+ min {n, (Nu mod P)}

Number of rows of u assigned to processor n:

bNu/Pc+

{
1 n < (Nu mod P)
0 otherwise



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

P >= Nu

Each processor is assigned to one row of u.

Each processor gets one or more rows of v .

- If Nu = 4, and P = 10, then 6 processors would get ≈ 1/3
of v , and 4 processors would get ≈ 1/2 of v .

Processor n is assigned to following row of u:

row =


n/(d + 1) n < m(d + 1)

m +
n −m(d + 1)

d
n ≥ m(d + 1)

where m = (P mod Nu), and d = bP/Nuc.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

P >= Nu (continued)

What piece of v does processor n get? Define

Q: Number of processors on current row:

Q =

{
d + 1 n < m(d + 1)
d n ≥ m(d + 1)

q: Rank of processor n in that list of processors

q =

{
n mod (d + 1) n < m(d + 1)
[n −m(d + 1)] mod d n ≥ m(d + 1)

Then the first row of v that processor n operates on is

q bNv/Qc+ min {q, (Nv mod Q)}

The number of rows of v that processor n operates on is

bNv/Qc+

{
1 q < (Nv mod Q)
0 otherwise



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Distribution, Nu = 6, Nv = 5, P = 4

0

1

2

3

4

5

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4




�

	

�




�

	

�



�

	
�



�

	
�

×

×

×

×

×

×

Rows vRows u



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Distribution, Nu = 6, Nv = 5, P = 14

0

1

2

3

4

5

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4



�

	
�


�

	
�



�

	
�


�

	
�

�

	
�



�

	
�



�

	
�



�

	
�



�

	
�



�

	
�



�

	
�



�

	
�



�

	
�



�

	
�

×

×

×

×

×

×

Rows u Rows v



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Implementation issues

Consider two examples:

P = 1000, Nu = 1000

Each processor is assigned to 1 row of u

Each processor operates on all of v .

P = 1999, Nu = 1000

Each processor is assigned to 1 row of u.

Each of 1998 processors operates on ≈ 1/2 of v .

One processor operates on all of v .

We have basically doubled the number of processors, but
computation time is the same! Moral of the story:

If P ≥ Nu, increase P by multiples of Nu.

If P < Nu, increase P by integer divisions of Nu.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Implementation issues

Consider two examples:

P = 1000, Nu = 1000

Each processor is assigned to 1 row of u

Each processor operates on all of v .

P = 1999, Nu = 1000

Each processor is assigned to 1 row of u.

Each of 1998 processors operates on ≈ 1/2 of v .

One processor operates on all of v .

We have basically doubled the number of processors, but
computation time is the same! Moral of the story:

If P ≥ Nu, increase P by multiples of Nu.

If P < Nu, increase P by integer divisions of Nu.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Implementation issues

Consider two examples:

P = 1000, Nu = 1000

Each processor is assigned to 1 row of u

Each processor operates on all of v .

P = 1999, Nu = 1000

Each processor is assigned to 1 row of u.

Each of 1998 processors operates on ≈ 1/2 of v .

One processor operates on all of v .

We have basically doubled the number of processors, but
computation time is the same!

Moral of the story:

If P ≥ Nu, increase P by multiples of Nu.

If P < Nu, increase P by integer divisions of Nu.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Implementation issues

Consider two examples:

P = 1000, Nu = 1000

Each processor is assigned to 1 row of u

Each processor operates on all of v .

P = 1999, Nu = 1000

Each processor is assigned to 1 row of u.

Each of 1998 processors operates on ≈ 1/2 of v .

One processor operates on all of v .

We have basically doubled the number of processors, but
computation time is the same! Moral of the story:

If P ≥ Nu, increase P by multiples of Nu.

If P < Nu, increase P by integer divisions of Nu.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Timing, u = y × 32× 32× 32, v = y × 32× 32× 32

Exponents ≈ 1.99



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Timing, u = y × 16× 16× 16, v = y × 16× 16× 16

Exponents ≈ 1.99 and 1.11



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Timing, u = y × 16× 16× 16, v = y × 16× 16× 16



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Timing, u = y × 32× 32× 32, v = y × 32× 32× 32



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Comments

Current algorithm

Pretty good memory savings.

Pretty good general algorithm.

Lots of useful serial and MPI functions.

Application will dominate storage/communication.

- What do we do with this beast?

Divergent behavior between memory-efficient mode and
non-memory efficient mode when P > Nu.

All in all, scales very well.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Comments (continued)

Future work

Look at symmetry in k-index transformation:

vi1i2...ik =
M∑

j1j2...jk=1

zi1j1zi2j2 · · · zik jk

Unwrap tensors and use the BLAS?

Consider more optimal splitting strategy.

Augment MPI calls with threads for better serial
performance.

Extend to different orders of indices.


	Introduction
	Strategy
	Serial
	Parallel

	Results
	Comments and future work

